If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2+7u=4=0
We move all terms to the left:
3u^2+7u-(4)=0
a = 3; b = 7; c = -4;
Δ = b2-4ac
Δ = 72-4·3·(-4)
Δ = 97
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{97}}{2*3}=\frac{-7-\sqrt{97}}{6} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{97}}{2*3}=\frac{-7+\sqrt{97}}{6} $
| 2(x+5)-4=2 | | 2x-5+4x=6x+3 | | 3d-8=d-22 | | -4n-12=20 | | 1+n/9=12 | | 5x(-11)=16 | | 7(-1+3a)=5(3-5a) | | T-8=1-3t-2 | | 10a=3a-28 | | 11r+9=-2 | | -752=-8(12n+10) | | 4(c-14)-18=-14 | | 1/3x+2=5/4+3x | | 6x+3=10x-9 | | 6x+1=2(3x+2)-3 | | s−−4=7.3 | | 3(k+4)=39 | | (22-w)/3=-9 | | -42=-7/2v | | -4(w+1)-w-8=-5(w+4)+8 | | 7x-3x+4=2(2x+2) | | 2(2.50)+3(1.07)+t=13.80 | | 2(6w-12)=2+6(2w-3) | | 12p=-3p+8 | | 15+6r=6r+15 | | -70=-7x | | 4x+2+3=2x+3x+12 | | 4(10+6v)=184 | | -6a+13=2a-11 | | 20-6=4x-15 | | (m+5)(m-6)=-24 | | -12=2t-11 |